
CPS311 Lecture: Introduction to Combinatorial Logic

last revised June 10, 2021
Objectives:

1. Ability to read simple logic diagrams
2. Ability to design simple combinatorial circuits

 Materials: 

1. Samples of logic technologies
2. Projectable of logic axioms
3. Circuit Sandbox for demos - including prebuilt circuits - Inverter, Two Input 

Gates, 4 Input NAND, A xor BC (five parts), 
4. Setup with scope, etc. to demonstrate physical properties of gates (needed for 

final session devoted to this topic)

I. Introduction

A. Today, we begin discussing the digital components that provide that are 
used to create the implementation of a computer system.  We will 
consider these in two groups:

1. Combinatorial logic: components whose output at any time is just a 
function of its input at that time: gates.

2. Sequential logic: components that have some sort of internal state, so 
that their output at any given time is a function of the history of inputs 
they have received: flip-flops and memory.

B. From physics we learn that all the complexity of the universe is built up 
from combinations of certain fundamental building blocks: electrons, 
protons, neutrons (or quarks if you will.)  In like manner, all the 
complexity of digital computers is built up from fundamental building 
blocks like GATES.

1. A gate is an electronic circuit having one or more inputs and one output, 
each of which can be in one of two states, commonly called 0 and 1. 
Further, the output at any time is some function of the inputs.
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2. Gates can be realized in many different ways, but we will say little 
about this.  We should note that the generations of computer hardware 
are largely distinguished by the technology used to realize gates:  relays 
(0); vacuum tubes (1); transistors (2); integrated circuits (3); very large 
scale integration (4).  With all pre-IC technologies, a gate would consist 
of a number  of discrete components wired together on a circuit board 
(cf sample  transistor board); with IC technologies, one or more gates 
are completely contained on a silicon chip.  With today’s technology, we 
may have one chip containing millions of gates.

C. For our purposes, we will think of a gate as a “black box” having one 
or more inputs plus a single output.

1. The voltage at the output of the gate is some function of the input 
voltages.

2. Example: a two-input gate

3. Gates are designed so that they respond to two discrete voltages - 
one of which is associated with the value 0 (false) and the other 
with the value 1 (true).  With the kinds of gates we will be be using 
in lab (TTL and CMOS), the value 0 (as input or output) will 
normally be represented by a voltage level close to 0.  The value 1 
will normally be represented by a voltage level of about 5 volts. (In 
more recent computers, the there has a been a trend to use a lower 
power supply voltage - and hence lower value for 1 - to conserve 
power - e.g. 3.3 to as low as 1.2 Volts).

4. In actual practice, any gate technology will accept a RANGE of 
voltages for each logic value.  For example, with TTL gates of the 
kind we will be using in lab, the following rules hold:

Vin1

Vin2

Vout = f(Vin1, Vin2)
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a) Any voltage between 0 and 0.8 Volts is regarded as low, and is 
interpreted as a zero.

b) Any voltage between 2 and 5 volts is regarded as high, and is 
interpreted as a one. 

c) Any voltage between 0.8 and 2 volts, or if an input is not 
connected at all, constitutes an undefined input. The output of 
any gate which has any undefined input can be 0, 1, or 
undefined itself.   (This may be represented by the symbol "X")

d) Any voltage less than 0 or greater than 5 volts is illegal, and 
may physically destroy the gate.

e) This turns out to be a fundamental distinction between digital 
and analog devices.  Because any value in a certain range is 
interpreted as a particular discrete value (0 or 1), digital systems 
have a high tolerance for electrical “noise”.  On the other hand, 
when digital systems fail, they tend to fail catastrophically.  
(Contrast the signal on an old VCR tape versus a DVD disk; 
consider also the effect of a scratch on a DVD.)

5. The output of a gate whose inputs are all defined will normally 
always lie in either the defined 0 or 1 range.

a) However if the outputs of two or more gates are connected, with 
at least one trying to output a 0 and the other a 1, then the output 
is itself is undefined.

b) The exception to this statement is that there is a type of gate 
called a tri-state gate whose output can be in one of 3 states: 0, 
1, or floating (denoted by the symbol "Z").  If the outputs of two 
or more tri-state gates are connected, and only one is actually 
output a 0 or 1 (the rest are floating), then the value of the 
output signal will be the one specified by the non-floating gate.  
(We will see examples of this later in the course.)

6. Actually, the convention we have been describing is one of two possible 
options, known as positive logic.  It is also possible to adopt the 
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convention of letting a low voltage (between 0 and 0.8 volts) represent a 
1, and a high voltage (between 2 and 5 volts) represent a 0.  This yields 
negative logic - but we won't discuss this further now - however, we will 
run across examples where this is used in later labs.

7. To keep our discussion simple, we normally describe the inputs and  
outputs of a gate as being 0 or 1 (or sometimes L = “low” or H = 
“high”, rather than worrying  about the specific voltages.  

D. We will represent the behavior of a gate by a table of combinations or truth 
table which shows the output of the gate for each possible combination of 
inputs.  For example, a 2 input AND gate has truth table: 

1. Note that for a gate with 1 input there are 4 possible truth tables, 
representing: 
 
- a gate whose output is always 0, regardless of input 
- a gate whose output is always 1, regardless of input 
- a gate whose output is the same as its input 
- a gate whose output is the opposite of its input: 
 

A

B

Y
Note: we are using a nondescript box.
Later we will see that there is a special
shape for certain types of gate.

Inputs Output
A B Y
0 0 0
0 1 0
1 0 0
1 1 1
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Of these, only the last two are of any interest at all, and he last one 
is most useful. (The first two are sometimes called “stuck at 0” and 
“stuck at 1”, and typically arise from a gate being defective for 
some reason.)

a) The gate whose output is the same as its input is often used in 
situations where it is necessary to amplify a signal to drive a 
number of gates.  Such a device is called a BUFFER: 
 
symbol:       

b) The gate whose output is the opposite of its input is called an 
INVERTER.  Two symbols can be used for this function: 
 

    or    
 
Note use of the "bubble" to symbolize inversion of the logic 
sense.  In the first case, the symbolism is that the output of the 
gate is the opposite of that from a simple buffer.  In the  second 
case, the symbolism is that the output of the gate is the same as 
that of a simple buffer whose input has been   inverted.  
Obviously, the two symbols describe two ways of  looking at the 
SAME BEHAVIOR, and so can be used interchangeably to 
describe the same physical circuit. 
 
DEMONSTRATE (File Inverter)

A Y

Input Output
A Y
0 1
1 0
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2. For a gate with 2 inputs, there would be 16 possible truth tables. 
(For each of the 4 combinations of the 2 inputs, we could choose 
one of two outputs.  Thus, there are 24 possible truth tables.  Again, 
only a limited number are of interest - we defer discussion until  
later.)

3. In general, for a gate with n inputs, how many truth tables are 
possible? 

 

ASK 
 
There are 22n possible truth tables - e.g. for 3 inputs there are 223  

= 28 = 256 possible truth tables.

II. Boolean Algebra

A. To describe the behavior of networks of gates, we use a notational 
system called boolean algebra (or switching algebra).  In this system, 
we have   only two values, 0 and 1, and three primitive operations:

1. Inversion or complementation, written Ā or A'.  (Note - in these 
notes I will use the symbol A' because it's easier to type!  The book 
consistently uses Ā - pronounced "A-bar"): 
 

A A' 
 

0 1 
1 0

2. Addition or Logical or, written A + B or A ∪ B (I'll use + in these 
notes, which is also the notation the book uses) 
 

A B A + B 
 

0 0 0 
0 1 1 
1 0 1 
1 1 1 Note: 1 + 1 = 1!
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3. Multiplication or Logical and, written A • B or A * B or A ∩ B or 
AB (I'll use • in these notes.  The book doesn't use any special 
symbol - just writes something like AB): 
 

A B A • B 
0 0 0 
0 1 0 
1 0 0 
1 1  1

B. As in any algebraic system, more complex operations can be built up 
out of the primitive operations, with operator precedence rules or 
parentheses for grouping - e.g: 

 
 

A' + A•B = (A') + (A•B) - truth table: 

 

A A A' AB A'+A•B 

 

0 0 1 0 1 
0 1 1 0 1 
1 0 0 0 0 
1 1 0 1 1

C. As in other algebras, there are certain properties that govern the behavior of 
more complicated expressions, such as associativity, commutativity, and 
distributivity.  However, whereas these are axioms for most algebraic 
systems, for boolean algebra they are theorems since any one of them can 
be proved from the definitions above by exhaustion (perfect induction).  
Here are some of the key properties:  

 

(Note: there are several others that appear in the book but are omitted here)   
PROJECT STEPPING THROUGH 
 

∀ A, B, C: 
 

Identity: A • 1 = 1 • A = A 
A + 0 = 0 + A = A  

 

Null Element: A • 0 = 0 • A = 0 
A + 1 = 1 + A = 1 
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Idempotence: A + A = A 
A • A = A 

 

Involution: (A')' = A 

 

Complements: A • A' = 0 
A + A' = 1 

 

Commutativity: A + B = B + A 
A • B = B • A 

 

Associativity: A + (B + C) = (A + B) + C 
A • (B • C) = (A • B) • C 

 

Distributivity: A • (B + C) = (A • B) + (A • C) 
A + (B • C) = (A + B) • (A + C) !! 

 

Demorgan's (A + B)' = A' • B' 
Theorems: (A • B)' = A' + B'

D.As an illustration of proof by perfect induction, we prove the first form 
of Demorgan's theorem: 

 

A B A+B (A+B)' A' B' A'•B' 
 

0 0 0 1 1  1 1 
0 1 1 0 1  0 0 
1 0 1 0 0  1 0 
1 1 1 0 0  0 0 

 

Notice that, for all possible values of A and B, the (A+B)' and A'•B' 
columns are the same - implying that (A+B)' = A'•B' for all A and B

III.Realization of Boolean Functions - Basic Types of Gates

A. Crucial to the design of computer systems is the ability to realize 
circuits composed of gates whose output corresponds to some boolean 
function of its inputs.  To do this, we usually use certain types of gates 
as building blocks, with more complex functions realized by 
combinations of gates in which the output of one gate becomes an 
input to another.
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B. While we could theoretically implement any truth table as a hardware 
primitive, most designs are built around a limited number of basic 
functions implemented in hardware.  We have met one already, the 
inverter.  Two-input functions of interest include:

1.  2-input AND: 

Y = A • B

2.  2-input OR:  

Y = A + B

3.  2-input NAND:  

Y = (A • B)'

4.  2-input NOR:  

Y = (A + B)' 
 
DEMONSTRATE each of the above using Circuit Sandbox. (File 
Two-Input Gates)

5. The latter two are of particular interest, for two reasons:

a) Most of the transistor circuits used in realizing gates have the effect 
of inverting the signal passing through them.  Thus, NAND and 
NOR can generally be realized more simply than AND or OR.

b)  NAND and NOR are logically complete.  Given either one, it is 
possible to realize any boolean function.  Examples

A

B

Y

A

B

Y

A

B

Y

A

B

Y
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(1) Invert realized using NAND:  
 

  Y = (A • A)' = A'

(2)AND realized using NAND:  
 

Y = ((A • B)')' = A • B
 
 

(3)OR realized using NAND: 
 

Y = (A' • B')' = A + B 
(by DeMorgan's theorem) 

 

DEMONSTRATE EACH OF THE ABOVE (Create on screen)

6. For any particular gate technology, usually one of the latter two 
will be more easily realized.  In the case of the TTL technology we 
will be using in lab, this is NAND. For consistency, we will work 
most of our examples for the rest of this unit using NAND.

7. Note that DeMorgan's theorem and the above construction suggests an 
alternate symbol for NAND: 
 

A

B

Y

A

B

Y

A

B
Y
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Y = A' + B' = (A • B)' 
 

This symbol says that the output of a NAND gate is the same as that  of 
an or gate presented with the inverse of the inputs presented to the 
NAND.  (The first symbol said that the output of a NAND gate is the 
inverse of that of an AND gate presented with the same inputs.)  
 

Note that both symbols describe exactly the same gate - a NAND gate 
may be drawn either way.  By convention, the symbol that is chosen is the 
one that most clearly represents the intended use  of the gate - e.g. the 
above diagram for an OR implemented with NANDS is more 
conventionally drawn as follows: 

 
 

C. Two other functions of two inputs are of some interest, though less 
than the previous four

1. 2-input XOR:  

 

Y = A ⊕ B  
 

Truth table: A B Y 
 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
DEMONSTRATE (using file Two Input Gates)

X

Y

Z

A

B
Y
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2. 2-input XNOR (Coincidence)  
 

Y = (A ⊕ B)'  
 

Truth table: A B Y 

 

0 0 1 
0 1 0 
1 0 0 
1 1 1 

 
Note that A XNOR B is true iff A = B. (XNOR and XOR are 
complements)

3. Both can be realized using other types of gates.  For example, the 
following is a realization of XOR using NAND - assuming that 
both the inputs and their complements are available.  (If not, two 
inverters would also be needed - however, for reasons we will see 
later, it is often that case that both the uncomplemented and 
complemented form of each input are readily available). 
 

  
Z = (A'•B)'' + (A•B')'' = A'•B + A•B' = A ≈ B       

 
DEMONSTRATE (Create on screen)

A

B
Y

A

B

A

B

Y
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D. We often find gates with more than two inputs, but they are usually 
extensions of the types of 2-input gates we have been looking at.  For 
example, 4-input NAND: 
 

 
Truth Table: 

 

A  B  C  D Z 
 
0  0  0  0 1 
0  0  0  1 1 
0  0  1  0 1 
0  0  1  1 1 
0  1  0  0 1 
0  1  0  1 1 
0  1  1  0 1 
0  1  1  1 1 
1  0  0  0 1 
1  0  0  1 1 
1  0  1  0 1 
1  0  1  1 1 
1  1  0  0 1 
1  1  0  1 1 
1  1  1  0 1 
1  1  1  1 0

1. DEMONSTRATE using Circuit Sandbox (File 4 Input NAND)

2. Observe that, interestingly, this circuit outputs a zero just when its 
four inputs are all 1.  The fact that transistor circuits naturally inject 
a level of inversion into their computation - making NAND easier 
to implement than AND - leads to the use of negative logic (true = 
0, false = 1) in some situations.  In this case, we could think of our 
gate as a sort of “and” gate whose inputs use positive logic and 
whose output uses negative logic !   

A
B
C
D

Z
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IV.Realizing Any Boolean Function Using A Network of Gates

A. Observe that, since we have gates that are directly equivalent to the 
primitives of boolean algebra, we can convert any boolean expression 
into a network of gates that realizes it. 
 

Example: Y = A ⊕ (B • C) 
 

DEMONSTRATE (File A xor BC)

B. Actually, we can realize any boolean function using just AND and OR 
gates.  Observe that any boolean function can be written in  sum-of-
products form by using its truth table.   
 

Example: the above 
 

A  B  C Y 
 

0  0  0 0 
0  0  1 0 
0  1  0 0 
0  1  1 1 
1  0  0 1 
1  0  1 1 
1  1  0 1 
1  1  1 0

1. Find each row in the truth table where the output is 1.  This will 
contribute one term to the sum.  Thus, this function can be 
represented as a sum of four products:

2. Each product will contain each of the inputs either plain or 
complemented.  An input will appear plain if the row in question 
contains a value of 1 for that input, and complemented if it contains 
a 0.  Thus, the fourth row in the truth table (the first containing a 1 
output) gives rise to the term A'BC. 

 

A term that is the product of the true or complemented form of all 
the inputs is called a minterm.
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3. A function equivalent to our original function is therefore 
 

Y = A'BC + AB'C' + AB'C + ABC'

a) Note that each term is 1 for exactly one combination of inputs 
and 0 for all others.

b) Each term therefore gives us one of the 1's of the function.

c) This form of expression is called sum-of-products form.

d) This can then be realized by using a two-level AND-OR 
network: 
 

DEMONSTRATE - Second part of File A xor BC 
 

This realization is called a two-level AND-OR realization, since 

(1)The input must pass through two gate levels before arriving 
at the output.  This is of some significance, since all gates 
have a  certain finite propagation delay.   Note that, apart 
from building a  special-purpose gate, two logic levels is the 
best one can do for most functions.

(2)It is called an AND-OR realization because the first level 
consists of AND gates, and the second level is a single OR 
gate.

C. A boolean function in sum of products form can also be realized by 
using just one type of gate: the NAND gate.

1. Realize each term by using a NAND gate with as many inputs as 
there are inputs to the overall function.  Each gate input goes either 
to one of the function inputs or its complement as discussed above.  
The NAND gate's output is 0 just when the term itself is 1. 
(Negative logic)

2. Sum all of the terms using a NAND gate (represented - for clarity - 
in its alternate form) with as many inputs as there are terms. 
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DEMONSTRATE - NAND version of the above (Third part of file) 
 

Note that the only difference between this and the previous 
realization is adding "bubbles" to turn the ANDs and the ORs into 
NANDs.

3. We call this circuit a two-level NAND-NAND realization.

D. While the method outlined above gives a realization that cannot 
generally be improved on in terms of number of levels, it is not 
optimal in terms of number of gates.

1. Observe that our sum of products form can be simplified by the 
properties of boolean algebra as follows: 
 

A'BC+AB'C'+AB'C+ABC' = A'BC + A(B'C' + B'C + BC') 
= A'BC + A(B'C' + B'C' + B'C + BC') 
= A'BC + A(B'C' + B'C + B'C' + BC') 
= A'BC + A(B'(C'+C) + C'(B'+B)) 
= A'BC + A(B'•1 + C'•1) 

  = A'BC + A(B' + C') 
= A'BC + AB' + AC'

2. This yields a simplified two-level NAND-NAND realization 

 

DEMONSTRATE - Fourth part of file

3. This simplification would result in a considerable cost savings in 
construction.

a) The original circuit needed: 

 

4 3-input NAND gates 
1 4-input NAND gate 

b) The new circuit requires: 

 

2 3-input gates 
2 2-input gates 
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This involves both fewer gates and simpler gates, and so would 
be easier to build from SSI chips (as we will do in lab) or on a 
VLSI integrated circuit.

E. For functions of four variables or less, this simplification can be done  
simply by the use of a Karnaugh map.

1. Example, for the above: 
 
AB/C 0 1 
 
00 0 0 
01 0 1 
11 1 0 (Note order of rows!) 
10 1 1

2. Example for four variables: 
 
Y = A'BC'D' + A'B'C' + A'C'D + AB'CD + AB'C' + AB'D' 
 
AB/CD 00 01 11 10 
 
00 1 1 0 0 
01 1 1 0 0 
11 0 0 0 0 
10 1 1 1 1 
 
Simplified form: A'C' + AB'

3. In using a Karnaugh map, we cover all of the 1's by using maximal 
subcubes of one of the following forms: 

 

“8’s” completely covering two adjacent rows or two adjacent 
columns 
“4's” completely covering one row or one column 
squares of 4 - including ones that wrap around top and bottom or 
left and right, and ones that involve the four corners 
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“2’s” that cover two adjacent squares horizontally or vertically -  
 including ones that wrap around top and bottom or left and right

4. The method works because the values are ordered in such a way that any 
two horizontally or vertically adjacent entries differ in exactly one input, 
whose value is irrelevant if both squares contain a 1.

5. In setting up functions to be minimized using a Karnaugh map, it is often 
helpful to use a different notation for the function.  Basically, we 
represent each 1 of the function by a decimal number that is the 
equivalent of the binary number representing the values of the inputs.

a) Example: Y = A'B'CD + AB'C'D can be written 

 

Y(A,B,C,D) = ∑  (3, 9) 

 

because A'B'CD corresponds to an input pattern of 0011 = 
decimal 3 and AB'C'D corresponds to an input pattern of 1001 = 
decimal 9

b) In doing this, one must be sure to include all the variables in 
each term. 

 

Example: Y = A'CD + ABC  

 

must be written as Y = A'B'CD + A'BCD + ABCD' + ABCD 

 

which yields ∑ (3, 7, 14, 15)

F. Often, in designing a logic circuit, it happens that certain input patterns 
are known to not be possible.  Thus, the output produced for these 
patterns is irrelevant.  We refer to this as a don't care condition.

1. Example: a 7-segment decoder translates the binary representation of a 
decimal digit into 7 outputs corresponding to the 7 segments of an 
LED display.  Consider just the output for the bottom bar: 
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This needs to be on when the input is 0, 2, 3, 5, 6, or 8, and off when 
the input is 1, 4, 7, or 9.  We don't care what its state is for inputs 
10-15, since these don't correspond to any decimal digit and thus 
presumably cannot occur.  Thus, our function for the bottom bar is 

 

Y(A3,A2,A1,A0) = ∑  (0, 2, 3, 5, 6, 8) + d(10, 11, 12, 13, 14, 15) 

 

(where d stands for “dont care”)

2. In constructing the map, we put 1's for the 1's of the function,  d's 
for the don't cares, and 0's for everything else. 

 

Example: 

 

A3 A2 / A1 A0 00 01 11 10 

 

00 1 0 1 1 
01 0 1 0 1 
11 d d d d 
10 1 0 d d

3. In constructing a covering, we must cover ALL the one's, but only 
cover d's which help us to construct bigger sub-cubes.  For 
example, in the above it would be convenient to cover four of the 
d's, while leaving two uncovered.   This means that the circuit will 
output 1 for inputs 10, 11, 13, and 14; but 0 for inputs 12 and 15.  
But since those input patterns do not represent legal decimal digits, 
we really don’t care what the circuit would do in those cases! 

 

A3 A2 / A1 A0 00 01 11 10 

 

00 1 0 1 1 
01 0 1 0 1 
11 d d d d 
10 1 0 d d
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4. (If time) do another segment as an example

G. When working with NOR logic, it is convenient to use a mirror-image 
technique:

1. Working directly with the truth table, we can represent function as a 
product of sums, derived by looking at the zeroes of truth table. Each 
input appears in ordinary form if the row contains a zero; 
complemented form if it contains a 1.  Example: our earlier example 
Y = A ⊕ (B • C).  We look for the zeroes of the truth table: 
 
A  B  C Y 
 

0  0  0 0 
0  0  1 0 
0  1  0 0 
0  1  1 1 
1  0  0 1 
1  0  1 1 
1  1  0 1 
1  1  1 0 
 
This yields a product of sums form in which each factor is zero for just 
one row of the truth table; of course, the overall function is zero just 
when any factor is zero, and one when all the factors are one: 
 
Y = (A + B + C)(A + B + C')(A + B' + C)(A' + B' + C')

2. We can realize with a product of sums with one NOR gate for each  
factor plus one NOR (drawn in dual form) to multiply all factors. 
 
DEMONSTRATE: Fifth part of A xor BC file

3. We can also use Karnaugh-map minimization, we covering the 
ZEROES, and put the variable in the expression in straight form if 
it is a zero and complemented if it is a one. 
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Example: map for the above: 

 

AB/C 0 1 

 

00 0 0 
01 0 1 
11 1 0 
10 1 1 
 
Simplified expression is (A + C)(A + B)(A' + B' + C')

V. The Physical Characteristics of Gates (Omit/Compress if Necessary)

A. In our discussion thus far, we have treated gates as “black boxes” - i.e. 
idealized devices whose inputs and outputs are one of two discrete 
values, and whose output at any time is purely a function of its inputs 
at that time.  In reality, of course, gates are physical devices, and their 
actual behavior differs a bit from the ideal behavior we have 
discussed.  We want to look briefly at a few of the ways that actual 
physical characteristic impact on functionality.

B. Noise Immunity

1. We have talked as if gate inputs and outputs are simply 0 and 1.  In 
reality, the input to a gate is a voltage, with any voltage in a certain 
range being treated as 0, and any voltage in a different range being 
treated as 1, and any other voltage being prohibited. 
 
Example: TTL gates of the sort we are using in lab: 
 
0 .. 0.8 volts = 0 
2.0 .. 5.0 volts = 1

2. In reality, there is always a certain amount of electrical “noise” in 
the circuits of which a gate is a part.
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a) Some of this comes from the gates themselves.  Ideally, when a 
gate switches from - say - 0 to 1, its output should look like this: 
 

 
 

In reality, its output typically looks more like this: 
 

 
 

This behavior (known as “ringing”) is a consequence of the 
physical transitions occurring inside the transistors from which 
the gate is constructed.

b) Moreover, electrical noise is often induced by other nearby 
gates.  When a nearby gate changes state, a gate that is not 
changing may still exhibit some fluctuation in its output. 
 

c) Also, other nearby devices - especially those that spark (e.g. 
motors), radio signals, etc. can also result in fluctuations in the 
actual voltage on a wire connecting two gates.

3. As long as the electrical noise does not cause the output of a gate to 
move outside the range that is reliably recognized as 0 or 1 (as the 
case may be), it should have no effect on other gates.  The safety 
margin is known as the noise immunity of the gate. 
 
Example: TTL gates are typically  designed so that their “zero” 
output is guaranteed to be no greater than 0.4 volt.  Since another 
gate will recognize any voltage less than 0.8 as a zero, there is a 
margin for error of 0.4 volts.  As long as electrical noise does not 
cause the apparent output to rise more than this, the circuit will 
behave reliably.     
 
Noise becomes more of a problem as supply voltage drops.
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4. However, if there is too much electrical noise present (due to 
inattentiveness to certain issues in design), the circuit will not be reliable.  
This is why digital systems typically incorporate various kinds of metal 
shielding to keep out ambient signals, and why circuit boards typically 
incorporate devices known as a capacitors at the power pins of chips to 
minimize interaction between chips through the power supply.

5. Digital systems designed for use in environments where there is a large 
amount of electrical noise (e.g. systems exposed to nuclear radiation, 
systems that control electrical devices such as motors) require special 
“hardening” to prevent problems.  Absent this, a system that performed 
reliably in design may fail in surprising ways in the field.

C. Fanout

1. We have designed networks of gates in which the output of one gate 
may be connected to the input(s) of some number of other gates.  
However, the number of gates one gate may drive is not unlimited.

2. The term fanout refers to the maximum number of other gates of 
the same type one output is designed to drive.  For example, the 
TTL gates we are using in lab are typically have a fanout of 10 - 
one output of a particular gate may be connected to a maximum of 
10 inputs of other gates. 

3. Exceeding the design fanout can result in a reduction in the noise 
margin;  exceeding it sufficiently far can produce unreliable 
behavior.  (I.e. a gate may be outputting a zero, but other gates may 
see the output as undefined and may interpret it as one instead.)

4. What does one do if a single output must drive more inputs than the 
fanout allows?  

 

For example, what if we are using gates designed for a fanout of 10 
in a circuit where one output has to drive 32 inputs? 
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ASK

5. This is a case where we need to make use of a buffer - a gate whose 
output is identical to its input: 
 

 
 

What we do is have the gate in question drive some number of 
buffers, each of whose output drives (up to) the maximum number 
of inputs. 
 

D. Propagation Delay

1. In our ideal description of gates, we assumed that the output at any 
point in time reflects the inputs at that same time.  In reality, as 
physical devices, all gates exhibit a finite propagation delay, such 
that when the input changes, the corresponding change at the 
output occurs some amount of time later. 
 
Example: the typical propagation delay for TTL gates of the sort 
we are using in lab is about 10 ns.  

2. Of course, when gates are interconnected in such a way that the 
output of one gate is connected to the input of another, the overall 
propagation delay for a network is the sum of the propagation 
delays down the longest (in terms of time) path from input to 
output in the network. 
 

output
of some
gate

inputs of 8 gates

inputs of 8 gates

inputs of 8 gates

inputs of 8 gates
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Example: consider a circuit known as a full adder, that is used in 
doing arithmetic addition of two binary numbers: 
 

 
 
PROJECT 

a) The full adder handles one bit of calculating a sum, and has 
inputs for one bit of each of the numbers being added plus a 
carry from the next least significant bit.

b) This is one of the building blocks we will talk about soon, and 
has a special symbol: 
 

 
PROJECT

c) N full adders can be interconnected to add 2 N-bit numbers to 
produce an N-bit sum and a carry out, as follows (for simplicity 
doing only 4 bits in this case) 
 
 
 
 
 

A
B
Cin

Cout
∑
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PROJECT

d) Suppose that the propagation delays for the and and or gates are 
0.1 ns each, while that for the xors is 0.2 ns.  (XOR requires a 
more complex circuit).  Then the delay from A or B to Cout is 
max(0.1 + 0.1 ns, 0.2 + 0.1 + 0.1 ns) = max (0.2, 0.4 ns) = 0.4 ns.    

 

For an N bit adder constructed from full adders, the maximum 
propagation delay from the least significant bits in to the final 
carry out is N * 0.4 ns.  (This can be significantly reduced by using 
a strategy we won't discuss.) 

3. This delay is very important; it is, in fact, one of the key factors in 
determining how fast a digital system can run. 

 

Example: Suppose a CPU is designed to run at 2 GHz.  Then the 
worst-case propagation delay down any path must be less than  
1 / (2 GHz) = 1 / (2 x 109 sec-1) = 0.5 x 10-9 sec = 0.5 ns.  If all 
gates in the system have the same propagation delay, and the the 
longest path in the system involves 10 gates, then an individual 
gate’s propagation delay must be less that 0.05 ns.

A3
B3

Cout (overall)
∑ 3

A2
B2 ∑ 2

A1
B1 ∑ 1

A0
B0 ∑ 0
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4. As you know, CPU clock speeds have increased dramatically in 
your life time (by a factor of better than 1000 : 1).  This has been 
made possible, in part, by a dramatic decrease in propagation delay 
due to technological improvements.  (There have also been 
reductions due to techniques that have shortened the longest path) 
 
Example: One could not build a 2 GHz CPU using TTL gates of the 
sort we are using in lab, since the typical propagation delay for a 
gate is about 10 ns - about 200 times as great as what is needed for 
such a clock rate!  

a) One key factor has been using processes that reduce the feature 
size - the size of the individual components on the chip.

(1)Propagation delay is much less if a gate is designed only to 
drive other gates on the same chip, as opposed to sending a 
signal to another chip.  (The issue is not so much the 
physical distance, but rather the strength of the signal needed 
to ensure sufficient noise immunity.)

(2)Physically smaller circuits can change state more quickly.

b) Another factor has been the use of lower voltages, which 
reduces the “swing” between low and high, and, in particular, 
the time needed to charge/discharge capacitance on the chip.  Of 
course, this comes at the cost of a reduction in noise immunity, 
which calls for other compensating measures to minimize 
extraneous signals.

5. While clock speed increases arising from propagation delay 
decreases have been dramatic in the past few decades, there is 
strong evidence that we have“hit a wall”.   
 
Cf an Dr. Dobb's Journal entitled ”The Free Lunch is Over” (March 
2005).  The essential thesis is that techniques for increasing clock 
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speeds that have worked in the past are beginning to hit 
fundamental limits, and that future increases in speed will largely 
come through various forms of concurrency, rather than 
improvements to raw speed.  While this is now an old article, this 
observation about clock speed has held true for well over a decade.  
 
Today, one manifestation of this is the growing use of multicore 
processors, GPU’s, etc. .  We will spend quite a bit of time on this 
later in the course.
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